Circle-equivariant Classifying Spaces and the Rational Equivariant Sigma Genus

نویسنده

  • MATTHEW ANDO
چکیده

We analyze the circle-equivariant spectrum MStringC which is the equivariant analogue of the cobordism spectrum MU〈6〉 of stably almost complex manifolds with c1 = c2 = 0. In [Gre05], the second author showed how to construct the ring T-spectrum EC representing the T-equivariant elliptic cohomology associated to a rational elliptic curve C. In the case that C is a complex elliptic curve, we construct a map of ring T-spectra MStringC → EC which is the rational equivariant analogue of the sigma orientation of [AHS01]. Our method gives a proof of a conjecture of the first author in [And03b].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sigma Orientation for Analytic Circle-equivariant Elliptic Cohomology

We construct a canonical Thom isomorphism for virtual T-oriented T-equivariant spin bundles with vanishing Borel-equivariant second Chern class, which is natural under pull-back of vector bundles and exponential under Whitney sum. It extends in the rational case the non-equivariant sigma orientation of Hopkins, Strickland, and the author. The construction relates the sigma orientation to the re...

متن کامل

Classifying Dihedral O(2)-Equivariant Spectra

The category of rational O(2)-equivariant spectra splits as a product of cyclic and dihedral parts. Using the classification of rational G-equivariant spectra for finite groups G , we classify the dihedral part of rational O(2)-equivariant spectra in terms of an algebraic model.

متن کامل

A ug 1 99 8 Spaces of maps into classifying spaces for equivariant crossed complexes , II : The general topological group case

Spaces of maps into classifying spaces for equivariant crossed complexes, II: The general topological group case. Abstract The results of a previous paper [3] on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for cross...

متن کامل

Discrete Torsion for the Supersingular Orbifold Sigma Genus

The first purpose of this paper is to examine the relationship between equivariant elliptic genera and orbifold elliptic genera. We apply the character theory of [HKR00] to the Borel-equivariant genus associated to the sigma orientation of [AHS01] to define an orbifold genus for certain total quotient orbifolds and supersingular elliptic curves. We show that our orbifold genus is given by the s...

متن کامل

Spaces of maps into classifying spaces for equivariant crossed complexes

We give an equivariant version of the homotopy theory of crossed complexes. The applications generalize work on equivariant Eilenberg-Mac Lane spaces, including the non abelian case of dimension 1, and on local systems. It also generalizes the theory of equivariant 2-types, due to Moerdijk and Svensson. Further, we give results not just on the homotopy classification of maps but also on the hom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007